Transformers

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers

Attention

- Attention is the primary mechanic used in the transformer network.

Transformers

Attention

- Attention is the primary mechanic used in the transformer network.
- A lot models use it in a range of ways.

Transformers

Attention

"An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key."

Transformers

Attention: Working Example
the cat danced \rightarrow die Katze tanzte

Transformers

Attention: Working Example

the cat danced \rightarrow die Katze tanzte

Assume that we have generated the first two words, and now are trying to generate: "tanzte".

Transformers

Attention: Working Example
the cat danced \rightarrow die Katze tanzte
the cat danced

The input words are the keys K and the values V .

Transformers

Attention: Working Example

the cat danced \rightarrow die Katze tanzte

The words generated so far are the queries Q .

Transformers

Attention: Working Example

Q: die Katze

K : the cat danced

V: the cat danced
[

$$
\begin{array}{ll}
{[-1.0,} & -2.5],
\end{array} \quad \# \text { q1: die }
$$

]
[

$$
\begin{array}{ll}
{[-2.0,} & -4.0],
\end{array} \begin{array}{ll}
{[-2.5,} & \text { \# k1: the } \\
{[4.5],} & \text { \# k2: cat } \\
{[4.5,} & 2.5]
\end{array}
$$

]
[

$$
\begin{array}{ll}
{[-2.0,} & -4.0],
\end{array} \quad \text { \# v1: the }
$$

]

Transformers

Attention: Working Example

- Note: the keys and the values correspond 1:1.

Transformers

Attention: Working Example

- Note: the keys and the values correspond 1:1.
- They don't have to be the same (although in the transformer models they always are.)

Transformers

Attention: Working Example

- Note: the keys and the values correspond 1:1.
- They don't have to be the same (although in the transformer models they always are.)
- In fact, the queries, keys, and values can all be the same vectors. This is self-attention.

Transformers

 Scaled Dot-Product Attention

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
```

```
Q = [
```

Q = [
[-1.0, -2.5], \# q1: die
[-1.0, -2.5], \# q1: die
[4.0, 3.0], \# q2: Katze
[4.0, 3.0], \# q2: Katze
]

```
]
```

```
K.T = [
```

K.T = [
[-2, -2.5, 4.5], \# k1: the
[-2, -2.5, 4.5], \# k1: the
[-4, -0.5, 2.5], \# k2: cat
[-4, -0.5, 2.5], \# k2: cat
\# k3: danced

```
        # k3: danced
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
    [
        (-1.0 * -2.0 + -2.5 * -4.0),
        (-1.0 * -2.5 + -2.5 * -0.5),
        (-1.0 * 4.5 + -2.5 * 2.5),
    ],
    [
        ( 4.0 * -2.0 + 3.0 * -4.0),
        (4.0 * -2.5 + 3.0 * -0.5),
        (4.0 * 4.5 + 3.0 * 2.5),
    ],
]
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
    [\mp@code{12.00, 3.75, -10.75 ],}
```

Each index in this NxM matrix represents the compatibility between query n and key m.

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
    [rrrrer, 3.75, -10.75 ],
```

Each index in this NxM matrix represents the compatibility between query n and key m.

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
    [\mp@code{12.00, 3.75, -10.75 ],}
```

Each index in this NxM matrix represents the compatibility between query n and key m.

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scores = [
    [ 12.00, 3.75, -10.75 ],
    [-20.00, -11.50, 25.50 ]]
scaled = [
    [ 4.0000, 1.2500, -3.5833],
    [-6.6667, -3.8333, 8.5000]]
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scaled = [
    [ 4.0000, 1.2500, -3.5833],
    [-6.6667, -3.8333, 8.5000]]
```

The motivation for scaling the product is that the dot product gets larger as the dimensionality gets larger: the variance of the dot-product of 0-1 random variables is the length of the vector.

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scaled = [
    [ 4.0000, 1.2500, -3.5833],
    [-6.6667, -3.8333, 8.5000]]
```

When the values are large, the gradients of the softmax will be small (which can hurt learning).

Transformers

Softmax

$$
\frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}
$$

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scaled = [
    [ 4.0000, 1.2500, -3.5833],
    [-6.6667, -3.8333, 8.5000]]
alpha = [
    [0.94, 0.06, 0.00],
    [0.00, 0.00, 0.99]
]
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
scaled = [
    [ 4.0000, 1.2500, -3.5833],
    [-6.6667, -3.8333, 8.5000]]
alpha = [
    [0.94, 0.06, 0.00],
    [0.00, 0.00, 0.99]
]
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    # Q : N x D_1
    # K : M x D_1
    # V : M x D_2
    # -> N x D_2
    scores = Q • K.T # N x M
    scaled = scores / sqrt(D_1) # N x M
    alpha = softmax(scores) # N x M
    out = alpha • V # N x d_2
out = [
        (0.94* -2.0 + 0.06* -2.5 + 0.00 * 4.5),
        (0.00 * -4.0 + 0.00 * -0.5 + 0.99 * 2.5),
    ],
        (0.94 * -2.0 + 0.06 * -2.5 + 0.00 * 4.5),
        (0.00 * -4.0 + 0.00 * -0.5 + 0.99 * 2.5),
    ]
]
```


Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    ..
    out = alpha • V
    # N x d_2
```

$$
\begin{aligned}
& \text { out }=[\\
& \quad[-2.02, \\
& {[4.3 .78]} \\
& {[49,} \\
& 2.49]]
\end{aligned}
$$

Transformers

Attention: Working Example

```
def scaled-dot-product-attention(Q,K,V):
    ..
    out = alpha • V
    # N x d_2
```

```
out = [
    \([-2.02,-3.78]\),
    [ 4.49, 2.49]]
```

- Thus, each query is mapped to a linear combination of the values.
- Note: the weight of each value depends on the compatibility between the corresponding key and query.

Transformers

Attention: Working Example

Transformers

Attention

"An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key."

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers

Multi-head Attention Intuition

- No parameters in scaled dot-product attention.

Transformers

Multi-head Attention Intuition

- No parameters in scaled dot-product attention.
- Thus, to influence how we attend the vectors, downstream functions have to be updated.

Transformers

Multi-head Attention Intuition

- Dot-product isn't flexible; it's difficult to attend to different aspects of a representation.

Transformers
 Multi-head Attention Intuition

- Dot-product isn't flexible; it's difficult to attend to different aspects of a representation.
- How can we get the model to attend differently based upon the context?

U_{a} q.v \uparrow

Multi-Head Attention

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers Transformer Block

1. Input embedding.

Transformers Transformer Block

1. Input embedding.
2. Position encodings are element-wise added to the embeddings.

Inputs

Transformers Transformer Block

1. Input embedding.
2. Position encodings are element-wise added to the embeddings.
3. Stacked transformer blocks.

Transformers Transformer Block

You may have noticed: there are two modules in the block we haven't covered.

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers

Positional Encoding

- Positional Encodings are meant to replace the ordering information lost (as all the vectors are operated on in parallel).
- These could directly learned; but the authors opt for a "simpler" approach.

Transformers

Positional Encoding

Transformers

Positional Encoding

the cat danced

$$
\begin{array}{ll}
{[-2,-4],} & \text { \# v1: the } \\
{[-2.5,-0.5],} & \text { \# v2: cat } \\
{[4.5,2.5]} & \text { \# v3: danced }
\end{array}
$$

Transformers
 Positional Encoding

[
[0, ... 0], \# v1: the
[0, ... 0], \# v2: cat
[0, ... 0] \# v3: danced
]

Transformers

Positional Encoding

Encoded Empty Embeddings

[
[0, ... 0], \# v1: the
[0, ... 0], \# v2: cat
[0, ... 0] \# v3: danced
]

Transformers

Positional Encoding

Encoded Empty Embeddings

[
[0, ... 0], \# v1: the
[0, ... 0], \# v2: cat
[0, ... 0] \# v3: danced
]

Transformers Positional Encoding

Transformers

Add \& Norm

def add-norm(sublayer, x): return LayerNorm(x + sublayer(x))

- Sub-layer connection between the input of the layer and the output of the layer.
- This structure has been used in a wide range of networks; its effective at "stabilizing the gradient", and letting us build deeper networks.
"Highway networks." arXiv preprint arXiv:1505.00387 (2015).

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Transformers

Add \& Norm

```
def add-norm(sublayer, x):
    return LayerNorm(x + sublayer(x))
```

"While the traditional plain neural architectures become increasingly difficult to train with increasing network depth (even with variance-preserving initialization), our experiments show that optimization of highway networks is not hampered even as network depth increases to a hundred layers."

Transformers

Add \& Norm

def add-norm(sublayer, x): return LayerNorm(x + sublayer(x))

- This is layer normalization across the residual connection between the input and the output of the sublayer (e.g. multi-head attention).
- It's similar to batch-normalization, except that all variables are normalized per layer.

Transformers

Add \& Norm

```
def add-norm(sublayer, x):
    return LayerNorm(x + sublayer(x))
```

"Layer normalization is very effective at stabilizing the hidden state dynamics in recurrent networks. Empirically, we show that layer normalization can substantially reduce the training time compared with previously published techniques."

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer
normalization." arXiv preprint arXiv:1607.06450 (2016).
https://pytorch.org/docs/stable/nn.html\#layernorm

Transformers

Position-wise Feed Forward

$$
\operatorname{FFN}(x)=\sigma\left(x \cdot W_{1}+b_{1}\right) \cdot W_{2}+b_{2}
$$

Transformers

Transformer Block Recap

1. Attention is used for Self-Attention.
2. Transformers don't require the size of inputs to match or be padded.
3. The operations are all parallel across the inputs.

Input Embedding

Inputs

Transformers

1. Attention
2. Multi-head Attention
3. Transformer Block
4. Other Modules
5. Models

Transformers
 Models

Transformer Encoder-Decoder (T-ED)
Transformer Decoder
Generative Pre-Training
Generative Pre-Training
Bidirectional Transformers
(T-D)
(GPT-1)
(GPT-2)
(BERT)

Transformers T-ED

Transformers T-ED

Transformers T-ED

Transformers T-ED

The outputs (so-far) are embedded in the same way.

Transformers T-ED

Self-attention starts each decoder block.

Transformers T-ED

Next, attention between the encoded inputs and the encoded outputs, and the outputs are mapped to the inputs.

Transformers T-ED

Softmax

\uparrow

Each output is produced auto-regressively.

Output Embedding

Outputs (shifted right)

Test / Live

Transformers
 Generating Outputs (Greedy)

Encoded Input

Input Embedding
<s> the cat danced <e>

Transformers
 Generating Outputs (Greedy)

die
Output Embedding

<s> the cat danced <e>

Transformers

Generating Outputs (Greedy)

Transformers
 Generating Outputs (Greedy)

Katze
Output Embedding

Input Embedding
Output Embedding
<s> the cat danced <e>

Transformers

Generating Outputs (Greedy)
Katze
Output Embedding

Input Embedding
<s> the cat danced <e>

Transformers

Generating Outputs (Greedy)

<s> the cat danced <e>

Transformers
 Generating Outputs (Greedy)

Output Embedding

Encoded Output
4
Transformer Decoder

Input Embedding
<s> the cat danced <e>

Transformers
 Generating Outputs (Greedy)

<s> die Katze tantze <e>

Training

Transformers T-ED

Output Probabilities
\uparrow

Softmax

\uparrow
Linear

Two minor details: masking \& shifting.

Transformers
 Masked Training

Transformers
 Masked Training

<s>	1	0	0	0
die	1	1	0	0
Katze	1	1	1	0
tantze	1	1	1	1

Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
            mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
Q = [[[1.0000, 1.0000], mask = [ [lll, 0, 0, 0], [1.0000, -2.5000], 
    [ 4.0000, 3.0000], [1, 1, 1, 0],
    [ 2.0000, -3.0000]] [1, 1, 1, 1]])
```


Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
scores =}\mathrm{ tensor([ 
```


Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
scaled = tensor(
    [[ 0.5000, -0.8750, 1.7500, -0.2500],
    [-0.8750, 1.8125, -2.8750, 1.3750],
    [ 1.7500, -2.8750, 6.2500, -0.2500],
    [-0.2500, 1.3750, -0.2500, 3.2500]])
```


Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
```

masked $=$ tensor $($
[[0.5000, -1e9, -1e9, -1e9],
[-0.8750, 1.8125, -1e9, -1e9],
[1.7500, -2.8750, 6.2500, -1e9],
$[-0.2500,1.3750,-0.2500,3.2500]])$

Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
```

Thus, as we generate the output for the first query, there is no compatibility between it and subsequent queries (and so on).
masked = tensor(
[$\left[\begin{array}{lll}0.5000, & -1 e 9, & -1 e 9, ~-1 e 9], ~\end{array}\right.$
[-0.8750, 1.8125, -1e9, -1e9],
[1.7500, -2.8750, 6.2500, -1e9],
$[-0.2500,1.3750,-0.2500,3.2500]])$

Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
alpha = tensor([[
    [1.0000, 0.0000, 0.0000, 0.0000],
    [0.0000, 1.0000, 0.0000, 0.0000],
    [0.0000, 0.0000, 1.0000, 0.0000],
    [0.0000, 0.0006, 0.0000, 0.9994]]])
```


Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q • K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
out = [ 
```


Transformers

Attention: Working Example

```
def masked-self-attention(Q, mask):
    # Q : N x D_1
    # mask : N x N
    K = V = Q
    scores = Q · K.T # N x N
    scaled = scores / sqrt(D_1) # N x N
    masked = scores.masked_fill(
        mask == 0, -1e9)
    alpha = softmax(masked) # N x N
    out = alpha • V # N x d_2
```


Transformers T-D

Transformers GPT (1)

- This is the first model that uses a transformer uses LM as pre-training for future use.
- T-D blocks are used as encoders, and then a single weight matrix is learned on top for finetuned tasks (at most 3 epochs of training).

Transformers GPT (1)

- They continue to use the LM as an auxiliary loss which speeds up convergence.
- They demonstrate zero-shot capacity on many simple tasks (sentiment analysis).

Transformers
 GPT (2)

- There are minor modifications to the transformer block, but it's basically just the T-D.
- Predominately, they only test on LM; they get SOTA on 7/8 datasets with zero-shot evaluation.

Transformers
 GPT (2)

- They demonstrated some capacity for zero-shot learning in other tasks (including reading comprehension and question answering). Both results were impressive, but not close to SOTA.

Transformers BERT

- Similar to GPT, but it is stacked T-E. - It used two pre-training tasks.

Transformers BERT

- The task is like LM, but instead the model has to predict words which were randomly masked.
- Like skip-thought vectors, they train the model to predict if two sentences should follow one another.

Transformers
 RNN Comparison

Transformers
 RNNs

Parallel across inputs.
Sequential across inputs.

Constant path length from input to output.
Path length from output symbol to input depends on the length of the sequence, making it difficult to learn long range dependencies.

